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Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis.
Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase
(MAPK) pathways, including those involving extracellular signal–regulated kinases (ERKs) or c-Jun
N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high
concentrations result in cell death. We found that low concentrations of ROS induced activating phos-
phorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of
JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may
control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop
involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to
an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and
decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of
ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that
control the cellular responses to different concentrations of ROS.
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INTRODUCTION

Reactive oxygen species (ROS) are generated as by-products of cellular
metabolism and function as second messenger molecules that regulate nu-
merous cellular processes, including proliferation, senescence, differentia-
tion, cell cycle, and apoptosis (1–4). The intracellular concentration of ROS
can determine whether cells undergo proliferation or cell cycle arrest and
apoptosis; low concentrations of ROS induce proliferation, whereas high
concentrations of ROS induce cell cycle arrest and apoptosis (3–5).

ROS can promote activation of extracellular signal–regulated kinases
1 and 2 (ERKs, also known as MAPK3 and MAPK1) (6, 7). ERKs are
members of a family of mitogen-activated protein kinases (MAPKs) that
are activated by various extracellular stimuli such as growth factors, cytokines,
ligands for heterotrimeric G protein (heterotrimeric guanine nucleotide–
binding protein)–coupled receptors, and carcinogens (8). ERKs are involved
in biological functions including the regulation of cell growth and anti-
apoptosis (9). The activation of ERK2 promotes cell proliferation in part
by phosphorylating and promoting degradation of the cyclin-dependent
kinase inhibitor p21Cip1 (encoded by the gene CDKN1A) (10).

ROS can also promote activation of the c-Jun N-terminal kinases 1 and
2 (JNKs, also known as MAPK8 and MAPK9) (11). JNKs are also mem-
bers of the MAPK family, like ERKs, and are activated by stress stimuli, such
as cytokines, ultraviolet irradiation, heat shock, and osmotic shock (12, 13),
thereby promoting apoptotic cell death (13, 14). In contrast to ERK2,
JNK1 promotes phosphorylation of p21Cip1, leading to stabilization (15).

The activity of MAPKs including ERKs and JNKs is regulated through
direct phosphorylation by a number of upstream kinases, including mixed
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lineage kinase 3 (MLK3, also known asMAP3K11). MLK3 is a ubiquitously
expressed mammalian mitogen-activated protein kinase kinase kinase (MAP3K)
in the JNKs pathway (16). MLK3 induces activation of JNKs and promotes
cell death by directly phosphorylating kinases upstream of JNKs (17, 18).
Whether MLK3 activates or inhibits ERKs remains controversial. One
group has shown that MLK3 activates ERKs in a kinase-independent man-
ner (19, 20), whereas another group has shown that MLK3 negatively reg-
ulates activation of ERKs through a transcriptional mechanism (21).

ROS regulates various cellular processes by influencing signaling path-
ways that involve complex mechanisms of feedback and crosstalk (22, 23).
Here, we found that different concentrations of ROS lead to reciprocal phos-
phorylation of ERKs and JNKs, which serves to coordinate ROS-dependent
cellular responses. Mathematical modeling of MAPK networks and bio-
chemical experiments revealed that MLK3 mediates a positive feedback
loop (PFL), which balances ROS concentration–dependent signal flow be-
tween ERK and JNK pathways, leading to proliferation or cell death.
RESULTS

Reciprocal phosphorylation of ERKs and JNKs in
response to ROS exposure
Previous studies demonstrate that cells either proliferate or die when ex-
posed to ROS, depending on the concentration (5). Similarly, we found that
exposing HeLa cells to a low concentration of H2O2 increased, whereas a
high concentration decreased, the number of viable cells (fig. S1A). More-
over, exposing cells to a high, but not low, concentration of H2O2 increased
the frequency of tetraploid and subdiploid cells (fig. S1B), suggesting that
these cells were undergoing cell cycle arrest and apoptosis.

The cyclin-dependent kinase inhibitor p21Cip1 suppresses proliferation
by inhibiting cell cycle progression (24, 25). Previously, we demonstrated
that exposing HeLa cells to concentrations of H2O2 between 100 and 500 mM
triggers the degradation of p21Cip1, whereas exposure to concentrations
greater than 500 mM does not (26). Here, we confirmed that exposing HeLa
cells to different concentrations of H2O2 for 1 hour produced a biphasic
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response. The abundance of p21Cip1 was strongly decreased in cells exposed
to low concentrations of H2O2, but was not as affected in cells exposed to
high concentrations of H2O2 (fig. S1C). In contrast, the abundance of the
cyclin-dependent kinase inhibitors p16Ink4a (encoded by the gene CDKN2A)
and p27Kip1 (encoded by the gene CDKN1B) was unchanged in cells ex-
posed to low or high concentrations of H2O2 for 1 hour (fig. S1C). ERKs
and JNKs phosphorylate p21Cip1 and affect its stabilization in opposite ways
(10, 15). We used small molecules to determine whether ERKs and JNKs
affect the steady-state abundance of p21Cip1 in HeLa cells exposed to a low
concentration of H2O2. We found that U0126, which inhibits the upstream
ERK-activating MEK (MAPK kinases, also known as MAP2Ks) (27), but
not SP600125, an ATP (adenosine 5′-triphosphate)–competitive inhibitor
of JNKs (28), reduced the ability of H2O2 to decrease the abundance of
p21Cip1 (fig. S1D). Thus, low concentrations of H2O2 activate ERK to inhibit
p21Cip1 and drive cell proliferation.

To investigate if the activity of ERKs and JNKs correlated with cellular
responses to ROS, we performed Western blot analysis of phosphorylated
ERKs and JNKs in lysates from HeLa cells exposed to a range of H2O2
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concentrations for 1 hour. The phosphoryl-
ation of the activation loop of ERKs (Thr202

and Tyr204 in ERK1 and Thr185 and Tyr187

in ERK2) was robustly increased at the
lowest concentration of H2O2 and inverse-
ly correlated with increasing concentrations
of H2O2 (Fig. 1A). In contrast, the phospho-
rylation of JNKs (Thr183 and Tyr185) increased
as a function of increasing concentrations
of H2O2 (Fig. 1B). The reciprocal responses
of ERKs and JNKs to varying concentra-
tions of H2O2 are consistent with the hypoth-
esis that these kinases could play a role in
determining the cellular response to ROS.

A mathematical model of the
ROS signaling network with a
focus on ERK and JNK signaling
To characterize the underlying mechanism of
how different concentrations of ROS produce
different cellular responses, we developed a
mathematical model of a ROS signaling net-
work with a focus on ERK and JNK sig-
naling (Fig. 2A and tables S1 to S5). We
Fig. 1. Concentration-dependent differences in the phosphorylation of ERKs and JNKs in response to ROS.

(A and B) Western blots for phosphorylated ERKs (A) or JNKs (B) in lysates of HeLa cells exposed to the
indicated concentrations of H2O2 for 1 hour. The graphs depict the means ± SEM of three blots from
biological replicates. b-Actin was used as a loading control.
 on July 11, 2015
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Fig. 2. Simulation of ROS-induced phosphorylation of ERKs and JNKs targets include Src, phosphatase and tensin homolog (PTEN), and apoptosis

using a mathematical model. (A) Schematic diagram of the ROS signaling
network model (see table S1). The ROS signaling network comprises four
major signaling modules involving either PI3K (purple square), p38-MAPK
(green square), ERK (thick blue arrow), or JNK (thick red arrow). ROS direct
signal–regulating kinase 1 (ASK1) (dotted red circles). GS indicates the
growth factor receptor–bound protein 2 (Grb2) and Son of Sevenless
(SOS) complex. (B and C) Graphs showing the results of simulations using
the mathematical model (see fig. S4).
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reconstructed the ROS signaling network using a variety of published data
(4, 14, 18–20, 29–108). We also determined that small-molecule inhibitors
of JNKs, p38-MAPKs, or MLK3 increased phosphorylation of ERKs
(fig. S2) and added these data to the model. Previous studies show that
MAPK phosphatases (MKPs) play a role in the crosstalk among MAPKs
(21, 109–116) (table S6), and thus, we also added the influences of MKPs
to the model.

The model consists of four signaling modules, including PI3K (phospho-
inositide 3-kinase), p38-MAPK, ERK, and JNK (Fig. 2A), comprising 57
state variables (table S3) and 238 kinetic parameters (table S4). To esti-
mate the kinetic parameters, we used time course data of signaling mole-
cules from previous studies (36, 44, 73, 79, 86, 117–121). In addition, we
measured phosphorylation of Akt (Ser473) and p38-MAPK (Thr180 and
Tyr182) in lysates from HeLa cells exposed to a low concentration of
H2O2 from 0 to 6 hours (fig. S3) and used these data to estimate the ki-
netics of activation of these kinases. We used the model to simulate the
time-dependent phosphorylation of ERKs and JNKs with varying concen-
trations of H2O2 and found that it recapitulated the experimental data (Fig.
2, B and C). In addition, the results from simulations for several other
biochemical species in the ROS signaling network correlated with the ex-
perimental data (fig. S4).

Essential feedback loops responsible for the
reciprocal phosphorylation of ERKs and JNKs in
response to ROS exposure
Feedback mechanisms are important in cell regulatory biology (122, 123).
We identified 13 feedback loops in the ROS signaling network (table S7)
and selected a representative interaction (feedback link) for each (fig. S5).
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Fig. 3. Simulation of inhibition of feedback
loops that are responsible for the reciprocal
phosphorylation of ERKs and JNKs in re-
sponse to ROS. (A) Feedback loops that
contain feedback links F4, F8, and F13
are essential in producing the reciprocal
phosphorylation of ERKs and JNKs in re-
sponse to ROS exposure. (B) Simulation
of ROS-induced phosphorylation of ERKs
and JNKs with varying amounts of inhibi-
tion of the F8 feedback link. (C) Simulation
of ROS-induced phosphorylation of ERKs
and JNKs with varying amounts of ASK1
inhibition. (D) Simulation of ROS-induced
phosphorylation of ERKs and JNKs with
varying amounts of inhibition of the F4
feedback link. (E) Simulation of ROS-
induced phosphorylation of ERKs and JNKs
with varying amounts of inhibition of the
F13 feedback link.
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Next, we considered network models for all possible combinations of
these 13 feedback loops, resulting in 8192 (213) rewired network models
in which each feedback link was either connected or disconnected. We
used each rewired network model to simulate the phosphorylation of
ERKs and JNKs in response to different concentrations of ROS. Rewired
network models that produced increased phosphorylation of ERKs at low
H2O2 concentrations and increased phosphorylation of JNKs at high H2O2

concentrations commonly included three feedback links (F4, F8, and F13)
(table S8). The feedback link F8 was a component of the MLK3-mediated
PFL, and the feedback links F4 and F13 comprised the crosstalk between
ERKs and JNKs mediated by MKPs (Fig. 3A), suggesting that these
feedback loops were essential for the reciprocal phosphorylation of ERKs
and JNKs to different concentrations of ROS. To investigate the role of the
three essential feedback loops that contain the feedback link F4, F8, and
F13 in our network model, we inhibited each essential feedback link
incrementally from 20 to 90% and monitored the downstream effects. In-
hibition of F8 increased phosphorylation of ERKs and suppressed phos-
phorylation of JNKs at high concentrations of ROS (Fig. 3B). To confirm
the role of the MLK3 (F8)–containing feedback loop, we performed simu-
lations using a network model where this loop was disconnected at a dif-
ferent interaction [MAPK kinase 7 (MKK7)–mediated phosphorylation
of JNKs] and found that inhibition of this link increased phosphorylation
of ERKs and suppressed phosphorylation of JNKs at high concentrations of
ROS (fig. S6A). Moreover, inhibition of ASK1, another MAP3K in the
JNKs pathway that induces apoptosis in response to ROS (124–126), also
increased phosphorylation of ERKs and suppressed phosphorylation of
JNKs at high concentrations of ROS (Fig. 3C), suggesting that ASK1
may be involved in the ROS-induced activation of the MLK3-mediated
PFL. In contrast to the F8 inhibition, inhibition of F4 or F13 increased phos-
phorylation of ERKs, but did not affect phosphorylation of JNKs at high
concentrations of ROS (Fig. 3, D and E). Thus, we concluded that the MLK3-
mediated PFL and the MKP-mediated crosstalk between ERKs and JNKs
were required for the different responses of ERKs and JNKs to ROS.

ROS signaling balanced by the MLK3-mediated PFL
To understand how the MLK3-mediated PFL influences ROS concentration–
dependent cellular responses, we used the ROS signaling network model
to simulate the phosphorylation of ERKs and JNKs with varying amounts
of inhibition of the F8 feedback link (MLK3). We defined the balancing
point as the H2O2 concentration at which the phosphorylation of ERKs is
equivalent to that of JNKs. We found that the balancing point shifted
toward higher concentrations of H2O2 as we increased the percentage of
inhibition of F8 (Fig. 4, A and B). Whether the balancing point reflects a
critical biological factor in a cell’s ability to respond to different ROS con-
centrations by proliferation or death is unclear because other factors be-
side the relative activity of ERKs and JNKs can influence these processes.
Nevertheless, these observations suggest that ROS concentrations lower
than the balancing point would induce proliferation due to the enhanced
activity of ERKs, whereas ROS concentrations greater than the balancing
point would promote apoptosis due to the enhanced activity of JNKs and
that the MLK3-mediated PFL balances ROS concentration–dependent sig-
nal flow between these two kinase pathways.

Biochemical validation of predictions from the ROS
signaling network model
To validate the predictions made by the mathematical model, we used
pharmacological and genetic inhibition of pathway enzymes and moni-
tored cellular responses to ROS. Inhibition of MLK3 by exposing HeLa
cells to the chemical K252a increased phosphorylation of ERKs and sup-
pressed phosphorylation of JNKs in cells exposed to high concentrations
of H2O2 (Fig. 5, A and B). Likewise, knockdown of MLK3 (Fig. 5C) or
MKK7 (fig. S6B) by infection of HeLa cells with virus encoding short
hairpin RNAs (shRNAs), or inhibition of ASK1 by exposing HeLa cells
to NQDI-1 (an ASK1 inhibitor) (Fig. 5D) had a similar effect as K252a on
the ROS concentration–dependent phosphorylation of ERKs and JNKs.
Moreover, exposing HeLa cells to NSC 95397 (an inhibitor of MKPs)
increased phosphorylation of ERKs but did not significantly change the
phosphorylation of JNKs in cells exposed to high concentrations of H2O2

(Fig. 5, E and F). Thus, these experimental data are consistent with the
prediction from the mathematical model that an MLK3-mediated PFL is
important for cellular responses to ROS.

We also examined whether these feedback loops play a role in cell
viability during exposure to ROS. In HeLa cells, inhibition of MLK3 with
K252a, inhibition of ASK1 with NQDI-1, or knockdown of MLK3 or MKK7
significantly increased viability at high concentrations of ROS (Fig. 6, A to C,
and fig. S6C). Moreover, inhibition of MKPs by exposing cells to NSC
95397 also increased cell viability at high concentrations of ROS (Fig. 6D).
Fig. 4. ROS concentration–dependent signal flow between the ERK and
JNK pathways balanced by the MLK3-mediated PFL. (A) Simulation of
ROS-induced phosphorylation of ERKs and JNKs with varying amounts
of inhibition of the F8 feedback link (MLK3). The black circles denote the
balancing point. (B) Simulation of the shift of the balancing point with vary-
ing amounts of inhibition of the F8 feedback link (MLK3).
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Next, we tested whether the MLK3 feedback–dependent control of
ROS-mediated cellular responses was conserved in other cancer cell types.
Exposing HCT116 colorectal adenocarcinoma cells or HuH-7 hepato-
carcinoma cells to K252a increased phosphorylation of ERKs and sup-
pressed phosphorylation of JNKs when exposed to high concentrations
of H2O2 (fig. S7, A and B). In contrast, exposing HCT116 cells to NSC
95397 increased phosphorylation of ERKs but did not significantly change
the phosphorylation of JNKs when exposed to high concentrations of
H2O2 (fig. S7A). Moreover, exposing HCT116 cells to either K252a or
NSC 95397 significantly increased cell viability at high concentrations
of ROS (fig. S7C). Likewise, exposing HuH-7 cells to K252a significantly
increased cell viability at high concentrations of ROS (fig. S7D). Thus,
feedback loops involving MLK3 and MKPs are likely a conserved require-
ment for ROS-dependent cellular responses in various cancer cells.
We examined whether MLK3 could control cellular responses to ROS
through ERKs or JNKs or both. We tested whether MLK3 knockdown
affects the cellular response to ROS exposure in the presence or absence
of ERK activation. MLK3 knockdown decreased ROS-induced phospho-
rylation of JNKs (fig. S8A) with the increase of cell viability (fig. S8B) in
the presence of U0126, suggesting that JNKs also play an ERK-independent
role in the MLK3-mediated cellular response to high concentrations of
ROS. Thus, both ERKs and JNKs are responsible for the phenotypic
control under ROS exposure.

DISCUSSION

ROS play a role in numerous intracellular signal transduction pathways that
regulate various cellular processes (1–4) and are implicated in a variety of
Fig. 5. Effects of inhibitors of MLK3, ASK1, or MKPs, or knockdown of MLK3
on the phosphorylation of ERKs and JNKs. (A and C to E) Western blots for
phosphorylated ERKs and JNKs in lysates of HeLa cells exposed to the in-
dicated concentrations of H2O2 for 1 hour after 1-hour preexposure to K252a
[(A) 100 nM; an MLK3 inhibitor], NQDI-1 [(D) 3 mM; an ASK1 inhibitor], or NSC
95397 [(E) 20 nM; an MKP inhibitor], or HeLa cells with MLK3 knockdown
exposed to the indicated concentrations of H2O2 for 1 hour (C). Antibodies
against a-actinin, b-actin, ERK1/2, and JNK2 were used as loading controls
as indicated. (B and F) Graphs depict the means ± SEM of phosphorylated
ERKs and JNKs of three blots from biological replicates of (A) and (E).
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Fig. 6. Effects of inhibition of MLK3, ASK1,

or MKPs, or knockdown of MLK3 on the cell
viability. (A toD) Graph of the percentage of
viable HeLa cells exposed to the indicated
concentrations of H2O2 for 24 hours after
1-hour preexposure to K252a [(A) 100 nM;
an MLK3 inhibitor], NQDI-1 [(C) 3 mM; an
ASK1 inhibitor], or NSC 95397 [(D) 20 nM;
an MKP inhibitor], or HeLa cells with MLK3
knockdown exposed to the indicated con-
centrations of H2O2 for 24 hours (B). Data
represent the means + SEM of three bio-
logical replicates. **P < 0.01; ***P < 0.001;
****P < 0.0001, Student’s t test.
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Fig. 7. The core circuit responsible for switching ROS-dependent
cellular responses. (A) Core circuit is composed of the MLK3-
mediated PFL and MKP-mediated crosstalk between ERKs and
JNKs. The blue arrow indicates the signal flow at low concentrations
of ROS, and the red arrow indicates the signal flow at high concentra-
tions of ROS. (B) Core circuit generates the reciprocal phosphoryl-
ation of ERKs and JNKs, which leads to ROS-dependent cellular
responses.
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diseases (127–130). ROS influence signaling pathways connected by com-
plicated regulatory mechanisms, including feedback and crosstalk (23).
We used mathematical modeling to identify design principles underlying
the mechanisms of ROS-mediated control of cell signaling and validated
the predictions using biochemical experiments in multiple cell lines. We
found that ERKs and JNKs are phosphorylated downstream of ROS in a
reciprocal concentration-dependent manner balanced by an MLK3-mediated
PFL. These observations are consistent with the following model (Fig. 7, A
and B): When cells are exposed to low concentrations of ROS, the activity
of ERKs is high and the MLK3-mediated PFL is not sufficiently activated
to stimulate JNKs activity, leading to cellular proliferation (Fig. 7, A and B,
lower left panel). When the cells are exposed to high concentrations of ROS,
the MLK3-mediated PFL is activated, which induces JNKs activation that
promotes apoptosis and suppresses proliferation through inhibition of ERKs
(Fig. 7, A and B, lower right panel).

From the view of system dynamics, the core circuit responsible for the
ROS-dependent cellular responses embedded in the ROS signaling network
is composed of an incoherent feed-forward loop (IFFL) (131, 132) and a nested
PFL (133) (fig. S9A). The dynamics of the system is determined by integration
of the positive (ROS→ERK) and the negative (ROS→JNK⊣ERK) regulatory
signals, leading to biphasic responses (“→” denotes a positive regulation, and
“⊣” denotes a negative regulation). In addition, the PFL nested in the negative
regulatory path (ROS→JNK⊣ERK) can further balance the signal flowof two
opposing signals (positive and negative regulatory signals) by activating the
repressor (JNK) of ERK in an all-or-none switch-like manner. This suggests
that the ROS-dependent cellular responses may arise from the combination of
two distinct structural features (IFFL and PFL) with characterized functions.
For instance, the biphasic response of the ERK can be enhanced or weakened
depending on the strength of the PFL [compare (i) and (ii) in fig. S9B].

The identification of the core circuit that coordinates ROS-dependent
cellular responses raises the question: What benefits does this mechanism
confer? One possible answer is enhanced efficiency of signal transduction
for multiple cellular functions. Signals from their extracellular environ-
ment tightly regulate fundamental cellular responses such as proliferation,
cell cycle, and apoptosis (134), and cells can respond to a graded range of
signals and produce discrete cellular outcomes (135). Our findings suggest
that the MLK3-mediated PFL provides a threshold that enables cells to con-
vert continuous stimuli into discrete cellular responses. Therefore, multiple
cellular phenotypes, such as proliferation and apoptosis, can be induced ef-
ficiently by a single stimulus through the same signal transduction network.

In summary, our study provides novel insight into how an MLK3-
mediated PFL regulates the relative activation of MAPKs and implies that
MLK3 is a crucial positive feedback mechanism involved in the ROS-
dependent cellular responses.
MATERIALS AND METHODS

Mathematical modeling
The ROS signaling network model was assembled from experiments
presented here and from published data (table S1). The mathematical
model was developed using a system of ordinary differential equations
(table S2), including 57 state variables (table S3) and 238 parameters (table
S4), and was solved using the MATLAB built-in function, ode15s (136).

To estimate the kinetic parameters of the mathematical model, we min-
imized the sum of squared difference between the experimental data and
the simulated values using the genetic algorithm (137) in MATLABOptimi-
zation Toolbox (138). The parameter estimates carry uncertainties due to
limited amounts of experimental data and measurement noise, which may
affect the reliability of the model predictions (139). To address this issue
and confirm the robustness of themodel,we carried out repetitive simulations
(n = 50) in which we simultaneously varied all the parameters at random in a
range of 30% of the initial value (fig. S4).

Cell culture
HeLa, HCT116, HuH-7, and human embryonic kidney (HEK) 293T cells
were cultured in Dulbecco’s modified Eagle’s medium (WelGENE Inc.)
with 10% fetal bovine serum and antibiotics [penicillin (100 U/ml), strep-
tomycin (100 mg/ml), and Fungizone (0.25 mg/ml)] (Life Technologies
Corp.) at 37°C in a humidified atmosphere containing 5% CO2. Cells were
exposed to vehicle control, K252a (100 nM; Sigma-Aldrich), NQDI-1 (3 mM;
Sigma-Aldrich), or NSC 95397 (20 nM; Sigma-Aldrich). For Western blots,
small molecules were applied to the cells 1 hour prior to the exposure to
H2O2 for 1 hour. For cell viability assays, small molecules were applied for
1 hour and then concurrent with H2O2 for 24 to 48 hours as indicated in
the figure legends.

Western blot analysis
Western blotting was performed as described previously (10). Briefly, cells
were lysed in lysis buffer [20 mM Hepes (pH 7.2), 150 mM NaCl, 0.5%
Triton X-100, 10% glycerol, aprotinin (1 mg/ml), 1 mg of leupeptin, 1 mM
Na3VO4, 1 mMNaF]. Antibodies against p16Ink4a (sc-1661), p21Cip1 (sc-397),
p27Kip1 (sc-1641), ASK1 (sc-7931), a-actinin (sc-15335), and b-actin
(sc-1616) were obtained from Santa Cruz Biotechnology Inc. Antibodies
against phospho-Akt (#9271), ERK (#9102), phospho-ERK (#9101 or
#9106), JNK (#9252), phospho-JNK (#9151 or #9255), phospho-p38
(#9211), MKK7 (#4172), and MLK3 (#2817) were obtained from Cell Sig-
naling Technology Inc. Signal intensities were quantified using ImageJ
(http://imagej.nih.gov/ij/) (140).

Cell viability assays
Relative cell viability was measured with WST-1 as described previously
(141). Briefly, WST-1 solution (Daeil Lab Service Co., Seoul, Korea)
was added to cells grown in 96-well plates for 1 to 2 hours, and absorb-
ance at 450 nm was measured using a VICTOR X3 Multilabel Plate
Reader (PerkinElmer Inc.).

For flow cytometry, about 1 × 106 cells were trypsinized and washed
twice with ice-cold phosphate-buffered saline (PBS) and then fixed over-
night at −20°C in 70% ethanol. Immediately before flow cytometry, the
cells were resuspended in PBS containing propidium iodide (50 mg/ml) and
DNase (deoxyribonuclease)–free RNase (ribonuclease) (10 mg/ml). Flow
cytometry was performed with a FACSCalibur (BD Biosciences) system.

shRNA knockdown
Retrovirus was generated in HEK293T cells transfected with helper plasmids
and pLKO.1 plasmids encoding shRNA targetingMLK3 (TRCN0000021567:
CCGGAGCACAAGACCCTGAAGATCACTCGAGTGATCTTCAGGGT-
CTTGTGCTTTTTT)orMKK7 (TRCN0000350455:CCGGGTCAAAGACT-
GCCTTACTAAACTCGAGTTTAGTAAGGCAGTCTTTGACTTTTTG)
(Sigma-Aldrich) using Lipofectamine (Invitrogen) according to the manufac-
turer’s instructions. Viral supernatants were collected at 60 hours after
transfection and supplemented with polybrene (4 mg/ml) and used to infect
HeLa cells. Infected cells were selected with puromycin (concentration)
(Sigma-Aldrich) for 14 to 21 days.
SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/7/328/ra52/DC1
Fig. S1. Effects of the different concentrations of ROS on cellular responses.
Fig. S2. Increased phosphorylation of ERKs induced by the inhibition of MLK3, JNKs, or
p38-MAPK.
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Fig. S3. Time course of H2O2-dependent phosphorylation of Akt and p38-MAPK.
Fig. S4. Comparison of the simulation results to the experimental data.
Fig. S5. Thirteen identified feedback links in the ROS signaling network.
Fig. S6. Effects of simulation and knockdown of MKK7 on the phosphorylation of ERKs
and JNKs and cell viability.
Fig. S7. Effects of MLK3 or MKP inhibitors on the phosphorylation of ERKs and JNKs and
cell viability in HCT116 and HuH-7 cells.
Fig. S8. Effects of inhibition of ERKs on the phosphorylation of ERKs and JNKs and cell
viability in cells with MLK3 knockdown.
Fig. S9. A simplified core circuit composed of an incoherent feed-forward loop and a nested PFL.
Table S1. Mathematical model reactions and processes.
Table S2. Mathematical model ordinary differential equations.
Table S3. Mathematical model initial values.
Table S4. Mathematical model kinetic parameters.
Table S5. Mathematical model constant values.
Table S6. MKP-mediated crosstalk among MAPKs.
Table S7. Feedback loops identified from the ROS signaling network.
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